Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 330: 121834, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368111

RESUMO

Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.


Assuntos
Aterosclerose , Glicocálix , Humanos , Heparitina Sulfato/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Heparina/farmacologia
2.
Carbohydr Polym ; 262: 117971, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838835

RESUMO

Chondroitin sulfate (CS) chains containing GlcUAß1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cartilagem/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Decapodiformes/química , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Citocinas/metabolismo , Dissacarídeos/química , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Camundongos , Metástase Neoplásica
3.
Nat Commun ; 11(1): 5915, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219207

RESUMO

Proteoglycans (PGs) are composed of a core protein and one or more chains of glycosaminoglycans (GAGs). The highly heterogeneous GAG chains play an irreplaceable role in the functions of PGs. However, the lack of an approach to control the exact structure of GAG chains conjugated to PGs tremendously hinders functional studies of PGs. Herein, by using glypican-3 as a model, we establish an aldehyde tag-based approach to assemble PGs with specific GAG chains on the surface of living cells. We show that the engineered glypican-3 can regulate Wnt and Hedgehog signaling like the wild type. Furthermore, we also present a method for studying the interaction of PGs with their target glycoproteins by combining the assembly of PGs carrying specific GAG chains with metabolic glycan labeling, and most importantly, we obtain evidence of GPC3 directly interacting with Frizzled. In conclusion, this study provides a very useful platform for structural and functional studies of PGs with specific GAG chains.


Assuntos
Glicosaminoglicanos , Glipicanas/metabolismo , Proteoglicanas , Animais , Metabolismo dos Carboidratos , Linhagem Celular , Glicômica/métodos , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Camundongos , Proteoglicanas/química , Proteoglicanas/metabolismo , Transdução de Sinais
4.
Biotechnol Biofuels ; 12: 260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700543

RESUMO

BACKGROUND: Macroalgae and microalgae, as feedstocks for third-generation biofuel, possess competitive strengths in terms of cost, technology and economics. The most important compound in brown macroalgae is alginate, and the synergistic effect of endolytic and exolytic alginate lyases plays a crucial role in the saccharification process of transforming alginate into biofuel. However, there are few studies on the synergistic effect of endolytic and exolytic alginate lyases, especially those from the same bacterial strain. RESULTS: In this study, the endolytic alginate lyase AlyPB1 and exolytic alginate lyase AlyPB2 were identified from the marine bacterium Photobacterium sp. FC615. These two enzymes showed quite different and novel enzymatic properties whereas behaved a strong synergistic effect on the saccharification of alginate. Compared to that when AlyPB2 was used alone, the conversion rate of alginate polysaccharides to unsaturated monosaccharides when AlyPB1 and AlyPB2 acted on alginate together was dramatically increased approximately sevenfold. Furthermore, we found that AlyPB1 and AlyPB2 acted the synergistic effect basing on the complementarity of their substrate degradation patterns, particularly due to their M-/G-preference and substrate-size dependence. In addition, a novel method for sequencing alginate oligosaccharides was developed for the first time by combining the 1H NMR spectroscopy and the enzymatic digestion with the exo-lyase AlyPB2, and this method is much simpler than traditional methods based on one- and two-dimensional NMR spectroscopy. Using this strategy, the sequences of the final tetrasaccharide and pentasaccharide product fractions produced by AlyPB1 were easily determined: the tetrasaccharide fractions contained two structures, ΔGMM and ΔMMM, at a molar ratio of 1:3.2, and the pentasaccharide fractions contained four structures, ΔMMMM, ΔMGMM, ΔGMMM, and ΔGGMM, at a molar ratio of ~ 1:1.5:3.5:5.25. CONCLUSIONS: The identification of these two novel alginate lyases provides not only excellent candidate tool-type enzymes for oligosaccharide preparation but also a good model for studying the synergistic digestion and saccharification of alginate in biofuel production. The novel method for oligosaccharide sequencing described in this study will offer a very useful approach for structural and functional studies on alginate.

5.
Chem Commun (Camb) ; 53(90): 12209-12212, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29077109

RESUMO

Based on multiple interactions and fluorescence quenching, we report a novel homogeneous detection method for Glypican-3 which shows a series of significant advantages, including low cost, ease of preparation, rapid response, and high sensitivity and has great potential in the clinical diagnosis of hepatocellular carcinoma and proteoglycan detection.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Ensaio de Imunoadsorção Enzimática , Glipicanas/sangue , Neoplasias Hepáticas/diagnóstico , Carcinoma Hepatocelular/sangue , Fluorescência , Humanos , Neoplasias Hepáticas/sangue
6.
Biochem J ; 474(22): 3831-3848, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28963345

RESUMO

Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications.


Assuntos
Organismos Aquáticos/enzimologia , Bactérias/enzimologia , Proteínas de Bactérias/química , Carbono-Oxigênio Liases/química , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Ácido Hialurônico/química , Oligossacarídeos/química , Configuração de Carboidratos
7.
Anal Chem ; 87(18): 9302-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26287436

RESUMO

Glycosaminoglycans (GAGs) are linear acidic heteropolysaccharides that are ubiquitously expressed in animal tissues and participate in various life processes. To date, the detection and visualization of GAGs in complex biological samples and living organisms remain a challenge because of the lack of powerful biocompatible probes. In this study, a superpositively charged green fluorescent protein (ScGFP) was shown great potential in GAG detection for the first time. First, on the basis of the phenomenon of GAGs dose-dependently inhibiting the fluorescence quenching of ScGFP by graphene oxide, a simple and highly sensitive signal-on homogeneous platform was established for detecting and quantifying GAGs, even in complex samples such as heparin in citrated plasma and oversulfated chondroitin sulfate in heparin. Furthermore, ScGFP with excellent stability and biocompatibility could be easily used as a highly sensitive and selective probe to visualize different types of GAGs in vitro and in vivo through combination with specific GAG-degrading enzymes. This study introduces a versatile probe for GAG detection, which is easy to prepare and which shows a high practical value in basic research and medical applications.


Assuntos
Glicosaminoglicanos/análise , Proteínas de Fluorescência Verde/química , Sondas Moleculares/química , Animais , Configuração de Carboidratos , Bovinos , Linhagem Celular , Sobrevivência Celular , Ácido Cítrico/química , Glicosaminoglicanos/sangue , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Modelos Moleculares , Sondas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...